
8-January-2008 © Copyright Ian D. Romanick 2008

Computer Graphics Programming II

Agenda:
● Course road-map

● Introduce OpenGL Shading Language (GLSL)
• Overview of programmable GPUs
• GLSL syntax
• Using GLSL shaders

● Phong shading with GLSL

8-January-2008 © Copyright Ian D. Romanick 2008

What should you already know?

All of the prerequisites from VGP351:
● C++ and object oriented programming

• For most assignments you will need to implement classes
that conform to a very specific interface.

● Graphics terminology and concepts
• Polygon, pixel, texture, infinite light, point light, spot light,

etc.

● Some knowledge of linear algebra / vector math
• Dot product, cross product, vector addition, subtraction,

etc.

● Some calculus will help with the readings

8-January-2008 © Copyright Ian D. Romanick 2008

What should you already know?

Drawing with OpenGL's fixed-function pipeline.
● Setting transformations

● Submitting vertex data

● Enabling and controlling lights

● Loading and configuring textures

● Enabling and controlling texture environment

Using OpenGL extensions

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

Advanced lighting models

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

Advanced lighting models
● BRDFs for realistic rendering of real materials

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

Advanced lighting models
● BRDFs for realistic rendering of real materials

● Rendering fur and hair

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

Advanced lighting models
● BRDFs for realistic rendering of real materials

● Rendering fur and hair

● “Toon” and other non-photorealistic rendering

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

Advanced lighting models
● BRDFs for realistic rendering of real materials

● Rendering fur and hair

● “Toon” and other non-photorealistic rendering

● Procedural textures

8-January-2008 © Copyright Ian D. Romanick 2008

How will you be graded?

Tests and quizzes:
● Bi-weekly quizzes worth 5 points each

● A final exam worth 50 points

Programming assignments:
● Seven weekly programming assignments worth 10

points each
• Each of assignment builds on the previous assignment

● One three-week term project worth 50 points

One in-class presentation worth 10 points

8-January-2008 © Copyright Ian D. Romanick 2008

How will programs be graded?

First and foremost, does the program produce
the correct output?

Are appropriate algorithms and data-structures
used?

 Is the code readable and clear?

8-January-2008 © Copyright Ian D. Romanick 2008

How will the presentation be
graded?

Read one of the papers during the term
● You actually need to read all of them

Present a summary of the paper to the class
● What is the problem being solved?

● How does the paper's author solve that problem?

● What is novel about the author's solution?

● What questions do you still have about the paper?

8-January-2008 © Copyright Ian D. Romanick 2008

Per-fragment Lighting without
GLSL

Recap from last term...
● Transform vertices, normals, and tangents by hand

● Use transformed data to calculate H and L vectors
by hand

● Store H and L vectors in texture coordinates and /
or colors

● Configure texture environment to perform DOT3 on
the bump map and H (specular) or L (diffuse).

8-January-2008 © Copyright Ian D. Romanick 2008

Per-fragment Lighting without
GLSL

What's wrong with this technique?

8-January-2008 © Copyright Ian D. Romanick 2008

Per-fragment Lighting without
GLSL

What's wrong with this technique?
● Slow!

• Lots of work to do on the CPU
• New data per-frame → uploads and pipeline stalls

● Difficult to implement
• How many actually completed this last term? :)

● Inflexible
• Difficult to implement “shininess” exponents
• Requires multiple passes for even simple effects

8-January-2008 © Copyright Ian D. Romanick 2008

Root Causes

Duplicate work that OpenGL already does
● Re-transformation of vertex data

Don't have access to the data that we really
want in the texture combiners
● Transformed light position

● Transformed and interpolated normal

8-January-2008 © Copyright Ian D. Romanick 2008

Programmable GPUs Solve This

Vertex stage is programmable
● Perform arbitrary calculations on per-vertex inputs

● Pass arbitrary data to the fragment pipeline

● Must also perform the “usual” vertex
transformations

Fragment stage is programmable
● Perform arbitrary calculations on vertex stage

outputs

● Must generate output color

● Can also modify fragment's Z value

8-January-2008 © Copyright Ian D. Romanick 2008

Dependent Texturing

Arbitrary values can be used to sample textures
● Interpolated outputs of vertex stage

• Just like fixed-function texture coordinates

● Coordinates calculated by fragment shader

● Value read from another texture
• Use a displacement map to calculate an offset to an

existing texture coordinate to read from another texture

8-January-2008 © Copyright Ian D. Romanick 2008

What is GLSL?

High-level, C-like shading language
● Originally developed at 3dlabs

● Part of core OpenGL in 2.0 (September 2004)

Graphics oriented additions:
● 2-, 3-, and 4-element vectors

● 2x2, 3x3, and 4x4 matrices
• OpenGL 2.1 adds non-square matrices

● Special type qualifiers for shader inputs and outputs

● Numerous built-in functions

8-January-2008 © Copyright Ian D. Romanick 2008

Vertex Shader

Programmable shaders replace the following:
● Vertex transformation

● Normal transformation, re-normalization, etc.

● Lighting calculations

● Texgen

● Texture coordinate transformation

8-January-2008 © Copyright Ian D. Romanick 2008

Vertex Shader (cont.)

Programmable shaders do not replace the
following:
● Perspective calculations

● Clipping

● Backface culling

● Primitive assembly

● Polygon offset

8-January-2008 © Copyright Ian D. Romanick 2008

Fragment Shader

Programmable shaders replace the following:
● All texture operations

● Fog application

● Application of primary and secondary colors

● Other bits that we didn't use in VGP351.

8-January-2008 © Copyright Ian D. Romanick 2008

Fragment Shader

Programmable shaders do not replace the
following:
● Shading model (flat vs. smooth)

● Alpha, depth, and stencil test

● Alpha blending

● Other bits that we didn't use in VGP351

8-January-2008 © Copyright Ian D. Romanick 2008

Vector and Matrix Types

2-, 3-, and 4-element vectors of various basic
types:
● bool → bvec2, bvec3, bvec4
● int → ivec2, ivec3, ivec4
● float → vec2, vec3, vec4

2x2, 3x3, and 4x4 float matrices
● mat2, mat3, mat4

8-January-2008 © Copyright Ian D. Romanick 2008

Type Qualifiers

Three special type qualifiers in GLSL
● uniform – Shader inputs that are constant across

a primitive group (begin / end pair).
• Like the parameters specified via glLightfv, glFogfv,

etc.

● attribute – Vertex shader inputs specified per-
vertex.
• Built-in values like glColor, glNormal, etc
• User-defined values

● varying – Vertex outputs (fragment inputs) that
are interpolated across primitives

8-January-2008 © Copyright Ian D. Romanick 2008

Basic Vertex Shader

varying vec3 normal;

void main(void)
{
 gl_Position = gl_ModelViewProjectionMatrix
 * gl_Vertex;
 normal = gl_NormalMatrix * gl_Normal;
}

8-January-2008 © Copyright Ian D. Romanick 2008

Basic Fragment Shader

varying vec3 normal;

void main(void)
{
 float dotProd = max(
 dot(gl_LightSource[0].position,
 normalize(normal)), 0.0);
 gl_FragColor =
 (gl_FrontMaterial.diffuse * dotProd)
 + (gl_FrontMaterial.specular
 * pow(dotProd, gl_FrontMaterial.shininess);
}

8-January-2008 © Copyright Ian D. Romanick 2008

References

http://www.mew.cx/glsl_quickref.pdf

http://www.mew.cx/glsl_quickref.pdf

8-January-2008 © Copyright Ian D. Romanick 2008

Break

8-January-2008 © Copyright Ian D. Romanick 2008

Using Shaders – Overview

There are a lot of steps, but it's not too scary.

1. Create shader objects.

2. Associate source code with shared objects.

3. Compile objects.

4. Attach objects to a program.

5. Link program.

6. Use the linked program!

There is a bit more to it than this.

8-January-2008 © Copyright Ian D. Romanick 2008

Create Shader Objects

Create shader objects using glCreateShader
GLuint glCreateShader(GLenum type);

● type is either GL_VERTEX_SHADER or
GL_FRAGMENT_SHADER.

● Unlike textures and buffer objects, this is the only
way to create a shader.

Create program object using
glCreateProgram

GLuint glCreateProgram(void);

8-January-2008 © Copyright Ian D. Romanick 2008

Set Shader Program Code

Specify the source text for the shader
void glShaderSource(GLuint shader,
 GLsize count, const GLchar **code,
 const GLuint *length);

● shader – Handle of the shader object whose
source code is to be replaced

● count – Number of elements in the code and
length arrays

● code – Array of pointers to strings containing the
source code of the shader

● length – Specifies an array of string lengths

8-January-2008 © Copyright Ian D. Romanick 2008

Compile Shaders

After specifying the program code, compile the
shader:

GLvoid glCompileShader(GLuint shader);

● Check for compile success with glGetError.

● If the compilation fails, check the log with
glGetInfoLog
• See the manual page for the details

8-January-2008 © Copyright Ian D. Romanick 2008

Link Program

Attach vertex and fragment shaders to a
program with glAttachShader

void glAttachShader(GLuint program,
 GLuint shader);

Once all shaders are attached, link the program
void glLinkProgram(GLuint program);

● After linking, check the error status and, if
necessary, the log.

A program need not have both a vertex shader
and fragment shader

8-January-2008 © Copyright Ian D. Romanick 2008

Use Linked Program

Select and enable a program with
glUseProgram

void glUseProgram(GLuint program)

● Different from textures which have a separate bind
and enable!

8-January-2008 © Copyright Ian D. Romanick 2008

Break

8-January-2008 © Copyright Ian D. Romanick 2008

Phong Shading

 Interpolate normals between vertices
● If polygons are large, we will probably need to re-

normalize the interpolated values.

 Interpolate H vector between vertices
● Again with the re-normalize step

Perform per-fragment.N⋅H n

8-January-2008 © Copyright Ian D. Romanick 2008

Surface-Space

From the point of view of the surface (i.e., in
surface-space), what is the normal vector?

8-January-2008 © Copyright Ian D. Romanick 2008

Surface-Space

From the point of view of the surface (i.e., in
surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

8-January-2008 © Copyright Ian D. Romanick 2008

Surface-Space

From the point of view of the surface (i.e., in
surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

 If we know the world-space surface normal,
N

surf
, can we create a transformation that will

map N
surf

 to (0, 0, 1)?

8-January-2008 © Copyright Ian D. Romanick 2008

Surface-Space

From the point of view of the surface (i.e., in
surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

 If we know the world-space surface normal,
N

surf
, can we create a transformation that will

map N
surf

 to (0, 0, 1)?

● Not uniquely.

● If we knew another vector in the plane, we could
create this transformation.

8-January-2008 © Copyright Ian D. Romanick 2008

Tangents

Call this new vector the tangent vector, and
note it T

surf
.

● Knowing N
surf

 and T
surf

 is enough the create an

orthonormal basis.

● This basis can transform any vector into surface-
space.

● Tangent vectors can be created automatically
(tricky) or by hand (annoying).

8-January-2008 © Copyright Ian D. Romanick 2008

Where does H come from?

NO WORK DONE ON CPU!!!

 In vertex shader:
● Calculate the surface-space transformation

● Calculate H per-vertex

● Transform the per-vertex H vector to surface space

● Pass H to fragment shader as a varying

 In fragment shader:
● Re-normalize interpolated H

8-January-2008 © Copyright Ian D. Romanick 2008

Where does N come from?

Three ways to get N:
● If surface is flat: N is constant (0, 0, 1), store in a

combiner constant color.

● If surface is curved: store per-vertex normal in one
of the interpolated colors.

● Surface is bumpy: fetch N from a texture.
• Texture is stored so that R, G, and B map to the X, Y,

and Z of the normal in surface space.
• These textures tend to look blue because the Z

component is usually close to 1.0.

8-January-2008 © Copyright Ian D. Romanick 2008

Creating TBN Basis In GLSL

varying vec3 light_dir;
attribute vec3 tangent;

void main(void)
{
 gl_Position = ftransform();

 vec3 t = gl_NormalMatrix * tangent;
 vec3 n = gl_NormalMatrix * gl_Normal;
 vec3 b = cross(n, t);

 vec3 vert_pos = vec3(gl_ModelViewMatrix * gl_Vertex);
 vec3 light = gl_LightSource[0].position - vert_pos;
 vec3 l;

 l.x = dot(light, t);
 l.y = dot(light, b);
 l.z = dot(light, n);
 light_dir = normalize(l);
}

8-January-2008 © Copyright Ian D. Romanick 2008

Next week...

More GLSL
● User defined uniforms

● User defined attributes

Render to texture

Environment mapping

Assignment #1 due

8-January-2008 © Copyright Ian D. Romanick 2008

Legal Statement

 This work represents the view of the authors and does not
necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

