
8-January-2008 © Copyright Ian D. Romanick 2008

Computer Graphics Programming II

Agenda:
● Course road-map

● Introduce OpenGL Shading Language (GLSL)
• Overview of programmable GPUs
• GLSL syntax
• Using GLSL shaders

● Phong shading with GLSL

8-January-2008 © Copyright Ian D. Romanick 2008

What should you already know?

All of the prerequisites from VGP351:
● C++ and object oriented programming

• For most assignments you will need to implement classes
that conform to a very specific interface.

● Graphics terminology and concepts
• Polygon, pixel, texture, infinite light, point light, spot light,

etc.

● Some knowledge of linear algebra / vector math
• Dot product, cross product, vector addition, subtraction,

etc.

● Some calculus will help with the readings

8-January-2008 © Copyright Ian D. Romanick 2008

What should you already know?

Drawing with OpenGL's fixed-function pipeline.
● Setting transformations

● Submitting vertex data

● Enabling and controlling lights

● Loading and configuring textures

● Enabling and controlling texture environment

Using OpenGL extensions

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

Advanced lighting models

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

Advanced lighting models
● BRDFs for realistic rendering of real materials

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

Advanced lighting models
● BRDFs for realistic rendering of real materials

● Rendering fur and hair

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

Advanced lighting models
● BRDFs for realistic rendering of real materials

● Rendering fur and hair

● “Toon” and other non-photorealistic rendering

8-January-2008 © Copyright Ian D. Romanick 2008

What will you learn?

OpenGL Shading Language
● How to write shaders.

● Load, compile, link, and use shaders.

Advanced lighting models
● BRDFs for realistic rendering of real materials

● Rendering fur and hair

● “Toon” and other non-photorealistic rendering

● Procedural textures

8-January-2008 © Copyright Ian D. Romanick 2008

How will you be graded?

Tests and quizzes:
● Bi-weekly quizzes worth 5 points each

● A final exam worth 50 points

Programming assignments:
● Seven weekly programming assignments worth 10

points each
• Each of assignment builds on the previous assignment

● One three-week term project worth 50 points

One in-class presentation worth 10 points

8-January-2008 © Copyright Ian D. Romanick 2008

How will programs be graded?

First and foremost, does the program produce
the correct output?

Are appropriate algorithms and data-structures
used?

 Is the code readable and clear?

8-January-2008 © Copyright Ian D. Romanick 2008

How will the presentation be
graded?

Read one of the papers during the term
● You actually need to read all of them

Present a summary of the paper to the class
● What is the problem being solved?

● How does the paper's author solve that problem?

● What is novel about the author's solution?

● What questions do you still have about the paper?

8-January-2008 © Copyright Ian D. Romanick 2008

Per-fragment Lighting without
GLSL

Recap from last term...
● Transform vertices, normals, and tangents by hand

● Use transformed data to calculate H and L vectors
by hand

● Store H and L vectors in texture coordinates and /
or colors

● Configure texture environment to perform DOT3 on
the bump map and H (specular) or L (diffuse).

8-January-2008 © Copyright Ian D. Romanick 2008

Per-fragment Lighting without
GLSL

What's wrong with this technique?

8-January-2008 © Copyright Ian D. Romanick 2008

Per-fragment Lighting without
GLSL

What's wrong with this technique?
● Slow!

• Lots of work to do on the CPU
• New data per-frame → uploads and pipeline stalls

● Difficult to implement
• How many actually completed this last term? :)

● Inflexible
• Difficult to implement “shininess” exponents
• Requires multiple passes for even simple effects

8-January-2008 © Copyright Ian D. Romanick 2008

Root Causes

Duplicate work that OpenGL already does
● Re-transformation of vertex data

Don't have access to the data that we really
want in the texture combiners
● Transformed light position

● Transformed and interpolated normal

8-January-2008 © Copyright Ian D. Romanick 2008

Programmable GPUs Solve This

Vertex stage is programmable
● Perform arbitrary calculations on per-vertex inputs

● Pass arbitrary data to the fragment pipeline

● Must also perform the “usual” vertex
transformations

Fragment stage is programmable
● Perform arbitrary calculations on vertex stage

outputs

● Must generate output color

● Can also modify fragment's Z value

8-January-2008 © Copyright Ian D. Romanick 2008

Dependent Texturing

Arbitrary values can be used to sample textures
● Interpolated outputs of vertex stage

• Just like fixed-function texture coordinates

● Coordinates calculated by fragment shader

● Value read from another texture
• Use a displacement map to calculate an offset to an

existing texture coordinate to read from another texture

8-January-2008 © Copyright Ian D. Romanick 2008

What is GLSL?

High-level, C-like shading language
● Originally developed at 3dlabs

● Part of core OpenGL in 2.0 (September 2004)

Graphics oriented additions:
● 2-, 3-, and 4-element vectors

● 2x2, 3x3, and 4x4 matrices
• OpenGL 2.1 adds non-square matrices

● Special type qualifiers for shader inputs and outputs

● Numerous built-in functions

8-January-2008 © Copyright Ian D. Romanick 2008

Vertex Shader

Programmable shaders replace the following:
● Vertex transformation

● Normal transformation, re-normalization, etc.

● Lighting calculations

● Texgen

● Texture coordinate transformation

8-January-2008 © Copyright Ian D. Romanick 2008

Vertex Shader (cont.)

Programmable shaders do not replace the
following:
● Perspective calculations

● Clipping

● Backface culling

● Primitive assembly

● Polygon offset

8-January-2008 © Copyright Ian D. Romanick 2008

Fragment Shader

Programmable shaders replace the following:
● All texture operations

● Fog application

● Application of primary and secondary colors

● Other bits that we didn't use in VGP351.

8-January-2008 © Copyright Ian D. Romanick 2008

Fragment Shader

Programmable shaders do not replace the
following:
● Shading model (flat vs. smooth)

● Alpha, depth, and stencil test

● Alpha blending

● Other bits that we didn't use in VGP351

8-January-2008 © Copyright Ian D. Romanick 2008

Vector and Matrix Types

2-, 3-, and 4-element vectors of various basic
types:
● bool → bvec2, bvec3, bvec4
● int → ivec2, ivec3, ivec4
● float → vec2, vec3, vec4

2x2, 3x3, and 4x4 float matrices
● mat2, mat3, mat4

8-January-2008 © Copyright Ian D. Romanick 2008

Type Qualifiers

Three special type qualifiers in GLSL
● uniform – Shader inputs that are constant across

a primitive group (begin / end pair).
• Like the parameters specified via glLightfv, glFogfv,

etc.

● attribute – Vertex shader inputs specified per-
vertex.
• Built-in values like glColor, glNormal, etc
• User-defined values

● varying – Vertex outputs (fragment inputs) that
are interpolated across primitives

8-January-2008 © Copyright Ian D. Romanick 2008

Basic Vertex Shader

varying vec3 normal;

void main(void)
{
 gl_Position = gl_ModelViewProjectionMatrix
 * gl_Vertex;
 normal = gl_NormalMatrix * gl_Normal;
}

8-January-2008 © Copyright Ian D. Romanick 2008

Basic Fragment Shader

varying vec3 normal;

void main(void)
{
 float dotProd = max(
 dot(gl_LightSource[0].position,
 normalize(normal)), 0.0);
 gl_FragColor =
 (gl_FrontMaterial.diffuse * dotProd)
 + (gl_FrontMaterial.specular
 * pow(dotProd, gl_FrontMaterial.shininess);
}

8-January-2008 © Copyright Ian D. Romanick 2008

References

http://www.mew.cx/glsl_quickref.pdf

http://www.mew.cx/glsl_quickref.pdf

8-January-2008 © Copyright Ian D. Romanick 2008

Break

8-January-2008 © Copyright Ian D. Romanick 2008

Using Shaders – Overview

There are a lot of steps, but it's not too scary.

1. Create shader objects.

2. Associate source code with shared objects.

3. Compile objects.

4. Attach objects to a program.

5. Link program.

6. Use the linked program!

There is a bit more to it than this.

8-January-2008 © Copyright Ian D. Romanick 2008

Create Shader Objects

Create shader objects using glCreateShader
GLuint glCreateShader(GLenum type);

● type is either GL_VERTEX_SHADER or
GL_FRAGMENT_SHADER.

● Unlike textures and buffer objects, this is the only
way to create a shader.

Create program object using
glCreateProgram

GLuint glCreateProgram(void);

8-January-2008 © Copyright Ian D. Romanick 2008

Set Shader Program Code

Specify the source text for the shader
void glShaderSource(GLuint shader,
 GLsize count, const GLchar **code,
 const GLuint *length);

● shader – Handle of the shader object whose
source code is to be replaced

● count – Number of elements in the code and
length arrays

● code – Array of pointers to strings containing the
source code of the shader

● length – Specifies an array of string lengths

8-January-2008 © Copyright Ian D. Romanick 2008

Compile Shaders

After specifying the program code, compile the
shader:

GLvoid glCompileShader(GLuint shader);

● Check for compile success with glGetError.

● If the compilation fails, check the log with
glGetInfoLog
• See the manual page for the details

8-January-2008 © Copyright Ian D. Romanick 2008

Link Program

Attach vertex and fragment shaders to a
program with glAttachShader

void glAttachShader(GLuint program,
 GLuint shader);

Once all shaders are attached, link the program
void glLinkProgram(GLuint program);

● After linking, check the error status and, if
necessary, the log.

A program need not have both a vertex shader
and fragment shader

8-January-2008 © Copyright Ian D. Romanick 2008

Use Linked Program

Select and enable a program with
glUseProgram

void glUseProgram(GLuint program)

● Different from textures which have a separate bind
and enable!

8-January-2008 © Copyright Ian D. Romanick 2008

Break

8-January-2008 © Copyright Ian D. Romanick 2008

Phong Shading

 Interpolate normals between vertices
● If polygons are large, we will probably need to re-

normalize the interpolated values.

 Interpolate H vector between vertices
● Again with the re-normalize step

Perform per-fragment.N⋅H n

8-January-2008 © Copyright Ian D. Romanick 2008

Surface-Space

From the point of view of the surface (i.e., in
surface-space), what is the normal vector?

8-January-2008 © Copyright Ian D. Romanick 2008

Surface-Space

From the point of view of the surface (i.e., in
surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

8-January-2008 © Copyright Ian D. Romanick 2008

Surface-Space

From the point of view of the surface (i.e., in
surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

 If we know the world-space surface normal,
N

surf
, can we create a transformation that will

map N
surf

 to (0, 0, 1)?

8-January-2008 © Copyright Ian D. Romanick 2008

Surface-Space

From the point of view of the surface (i.e., in
surface-space), what is the normal vector?
● Assuming the surface is flat, N = (0, 0, 1).

 If we know the world-space surface normal,
N

surf
, can we create a transformation that will

map N
surf

 to (0, 0, 1)?

● Not uniquely.

● If we knew another vector in the plane, we could
create this transformation.

8-January-2008 © Copyright Ian D. Romanick 2008

Tangents

Call this new vector the tangent vector, and
note it T

surf
.

● Knowing N
surf

 and T
surf

 is enough the create an

orthonormal basis.

● This basis can transform any vector into surface-
space.

● Tangent vectors can be created automatically
(tricky) or by hand (annoying).

8-January-2008 © Copyright Ian D. Romanick 2008

Where does H come from?

NO WORK DONE ON CPU!!!

 In vertex shader:
● Calculate the surface-space transformation

● Calculate H per-vertex

● Transform the per-vertex H vector to surface space

● Pass H to fragment shader as a varying

 In fragment shader:
● Re-normalize interpolated H

8-January-2008 © Copyright Ian D. Romanick 2008

Where does N come from?

Three ways to get N:
● If surface is flat: N is constant (0, 0, 1), store in a

combiner constant color.

● If surface is curved: store per-vertex normal in one
of the interpolated colors.

● Surface is bumpy: fetch N from a texture.
• Texture is stored so that R, G, and B map to the X, Y,

and Z of the normal in surface space.
• These textures tend to look blue because the Z

component is usually close to 1.0.

8-January-2008 © Copyright Ian D. Romanick 2008

Creating TBN Basis In GLSL

varying vec3 light_dir;
attribute vec3 tangent;

void main(void)
{
 gl_Position = ftransform();

 vec3 t = gl_NormalMatrix * tangent;
 vec3 n = gl_NormalMatrix * gl_Normal;
 vec3 b = cross(n, t);

 vec3 vert_pos = vec3(gl_ModelViewMatrix * gl_Vertex);
 vec3 light = gl_LightSource[0].position - vert_pos;
 vec3 l;

 l.x = dot(light, t);
 l.y = dot(light, b);
 l.z = dot(light, n);
 light_dir = normalize(l);
}

8-January-2008 © Copyright Ian D. Romanick 2008

Next week...

More GLSL
● User defined uniforms

● User defined attributes

Render to texture

Environment mapping

Assignment #1 due

8-January-2008 © Copyright Ian D. Romanick 2008

Legal Statement

 This work represents the view of the authors and does not
necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

